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Cluster turbulence: simulation insights
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Abstract. Cluster media are dynamical, not static; observational evidence suggests they
are turbulent. High-resolution simulations of the intracluster medium (ICM) and of ideal-
ized, similar media help us understand the complex physics and astrophysics involved. We
present a brief overview of the physics behind ICM turbulence and outline the processes
that control its development. High-resolution, compressible, isothermal MHD simulations
are used to illustrate important dynamical properties of turbulence that develops in media
with initially very weak magnetic fields. The simulations follow the growth of magnetic
fields and reproduce the characteristics of turbulence. These results are also compared with
full cluster simulations that have examined the properties of ICM turbulence.
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1. Introduction

Observation and theory have revealed the in-
tracluster medium (ICM) to be very dynamic
environments with active “weather” driven by
a host of activities such as mergers, accretion,
AGNs, galactic winds and instabilities. These
drivers are common and cause the ICM to be
criss-crossed by large-scaled, complex flows
that generate shocks, contact discontinuities
(aka “cold fronts”) and bulk shear. Inevitably
such flows should lead to turbulence in the
ICM, an outcome supported by growing obser-
vational evidence. These include, for example,
substantial ICM random velocities in Perseus
reducing resonance scattering in the 6.7 keV
iron line Churazov et al. (2004), evidence for
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thermal ICM pressure fluctuations in the Coma
cluster Shuecker et al. (2004), patchy Faraday
rotation measure distributions in several clus-
ters Bonafede et al. (2010) and the absence of
large scale polarization in cluster radio halos
Kim et al. (1990), suggesting disordered mag-
netic fields.

Turbulence in clusters is important to un-
derstand for many reasons. Turbulent pressure
helps support the ICM, so it is relevant to clus-
ter mass measures. Turbulence transports en-
tropy, metals and cosmic rays, all important
cluster diagnostics. It transports and amplifies
magnetic fields, which in turn control ICM vis-
cosity, resistivity and thermal conductivity, as
well as the propagation and acceleration of
cosmic rays. The literature on turbulence is ex-
tensive including excellent reviews on MHD
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turbulence, which is most relevant to the ICM
(e.g., Brandenburg & Subramanian (2005)).
Here we make a few observations pertinent to
this meeting.

2. Origins of cluster turbulence

Turbulence describes motions possessing sig-
nificant random velocities. This random veloc-
ity can include both compressible (∇ · u , 0)
and vortical, or solenoidal (ω = ∇ × u ,
0) components. In ICM circumstances, which
usually involve mostly subsonic flows, the vor-
tical component ordinarily dominates. Thus,
understanding this turbulence begins with an
identification of the sources of vorticity and the
manner in which vorticity evolves.

Euler’s equation for an ideal fluid can
be expressed in terms of vorticity Landau &
Lifshitz (1987),

∂ω

∂t
= ∇ × (u × ω) +

1
ρ2∇ρ × ∇P. (1)

This can be rewritten as a conservation law
for the integrated vorticity through a surface
element moving with the fluid, or by way of
Stokes’ Theorem a conservation of circulation
around that surface element,

d
dt

∫
ω·da =

d
dt

∮
u·dl =

∫
1
ρ2 (∇ρ×∇P)·da, (2)

where d/dt is the Lagrangian time derivative.
Equation 2 shows that in ideal, barotropic flows,

where the pressure depends only on density (∇ρ ×
∇P = 0), a fluid element’s net vorticity is con-
served. Local values of ω still change, of course,
without vorticity source terms. For instance, when
an incompressible flow element’s cross section is
decreased as it is stretched, ω will increase. This
vortex stretching (how tornados form) is central to
evolution of turbulent flows.

These vorticity properties are analogous to mag-
netic flux conservation familiar to all astrophysi-
cists. In fact, the magnetic induction equation in
ideal MHD is the same as the barotropic form of Eq.
1 with the substitution ω → B. The vortex stretch-
ing analogy applied to magnetic fields means that
stretched magnetic flux tubes enhance local fields.
The local B of an incompressible flux tube varies
in proportion to the length of the tube. Flux tube
stretching is, in fact, at the core of the turbulence

dynamo, or small scale dynamo that amplifies weak
magnetic fields inside turbulent conducting media.
Vortical turbulent motions statistically extend the
length of a fluid element over time, causing both
vorticity and magnetic field to be locally enhanced
while conserving total circulation and magnetic flux
in an ideal fluid. The root-mean-square (RMS) val-
ues of both vorticity and magnetic field intensity
grow in this way, even in the absence of source
terms.

On the other hand, vorticity can be generated at
the curved surface of shocks in and around clusters
(e.g., Ryu et al. (2003); Kang et al. (2007); Vazza
et al. (2009)) and by the baroclinity of flows. For
uniform upstream flow, the vorticity behind a curved
shock surface is

ωcs =
(ρ2 − ρ1)2

ρ1ρ2
KU1 × n̂, (3)

with ρ1 and ρ2 the upstream and downstream gas
densities, U1 the upstream flow velocity in the shock
rest frame, K the shock surface curvature tensor, and
n̂ the shock normal unit vector. If isopycnic (con-
stant density) and isobaric surfaces are not coinci-
dent, vorticity is generated according to Eq. 2. If we
let P = S ργ, where S is a proxy for entropy in a
γ-law gas, we see that the baroclinity is introduced
by shock induced entropy variations. See Ryu et al.
(2008) for more discussion of this issue. AGNs and
galactic winds also add shear to the ICM, so equiva-
lently, vorticity (ω ∼ ∆u/δ, where δ is the thickness
of the shear layer).

Subsequently, the energy in the vortical flows
cascades down to smaller scales and turbulence de-
velops, provided the viscous dissipation scale, lvisc,
is smaller than the “driving scale”, Ld, for the flow.
The driving scale, Ld, is generally comparable to
such things as the curvature radius of a shock, the
size of a substructure core, or the scale of an AGN
or galactic outflow. These likely range from ∼ 10s
of kpc to ∼ 100s of kpc.

The appropriate viscous dissipation scales in
the ICM remain uncertain. The media are hot and
very diffuse plasmas, so Coulomb collisions are in-
effective. The associated mean free path, λCoul ∼
1 kpc T5/2

keV/(n−3uth,100), ranges from ∼ 10s of pc
to ∼ 10s of kpc, depending on the cluster circum-
stances. Here TkeV is the ICM temperature in keV,
n−3 is the density in 10−3cm−3 and uth,100 is the ther-
mal velocity of ions in 100 km/sec. The correspond-
ing kinetic viscosity, ν ∼ uthλCoul, is very large, and
the Reynolds number, Re ∼ LdU/ν ∼ few × 10
, with U ∼ uth ∼ few to 10s, the velocity at the
driving scale. Hence, the viscous dissipation scale
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due to Coulomb scattering alone, lvisc ∼ Ld/Re3/4,
would range from fractions of a kpc in cooling cores
to several 10s of kpc in the hot ICM. On the other
hand, it has been suggested that plasmas threaded
with weak magnetic fields, like the ones in the ICM,
are subject to gyro-scale instabilities, such firehose
and mirror instabilities; then, the scattering of parti-
cles with the resulting fluctuations could reduce the
particle mean-free path, so also the viscous dissipa-
tion scale Schekochihin & Cowley (2006). The de-
tailed picture is still very uncertain. Nevertheless, in
our discussion below we assume the physical dissi-
pation scale is at least as small as the effective dis-
sipation scales of the simulations, so of order the
grid resolution. In our simulations, the grid resolu-
tion would be ∼ 1 kpc or so (see Sect. 3), while for
full cluster simulations it is at least several kpc.

The resistive dissipation scales, lres, in the ICM
are also uncertain. In a turbulent flow with η � ν,
it is lres ∼ Ld/Rm1/2, where Rm ∼ LdU/η is the
magnetic Reynolds number. It is likely that the mag-
netic Prandtl number Pr,M ≡ Rm/Re = ν/η >∼ 1
in the ICM. For instance, viscosity and resistivity
due exclusively to Coulomb scattering would lead
to Pr,M � 1 (e.g., Spitzer (1978)). In the simula-
tions reported here, both the viscosity and resistivity
have numerical origins with dissipation scales of or-
der the grid resolution; thus, Pr,M ∼ 1. Most simula-
tions, including most full cluster simulations, effec-
tively have Pr,M ∼ 1 too. Strictly speaking, the sim-
ulations with Pr,M ∼ 1 should be valid only in, and
so applied only to the scales of l >∼ lvisc and l >∼ lres.
For the scales of lres <∼ l <∼ lvisc, simulations with
large Prandtl number are required. It is, however,
hard to reproduce large Prandtl number turbulence
with sufficient viscous and resistive inertial ranges
(e.g., Schekochihin et al. (2004)).

3. Simulation of ICM-like turbulence

It is not simple to isolate turbulence from generally
complex motions in real or simulated clusters. As
a complementary exercise we have initiated a high-
resolution simulation study of the evolution and sat-
uration of driven MHD turbulence in periodic com-
putational domains that resemble ICM. Since clus-
ter media, while clearly magnetized, are not ener-
getically dominated by magnetic fields, we focus on
turbulence developed with initially very weak mag-
netic fields. The full study considers both compress-
ible and incompressible fluids and ideal and non-
ideal media with a range of magnetic Prandtl num-
bers. We report here some initial results of simu-
lations of ideal, compressible MHD turbulence in

isothermal media. The simulations used an isother-
mal ideal MHD code, which is a version updated
from that of Kim et al. (2001) for massive paral-
lelization. Results here are from simulations with
10243 and 20483 grid zones (with the typical clus-
ter sizes ∼ 1 Mpc, the grid resolution would be
∼ 1 kpc). The two simulations are very consistent;
the higher resolution calculation produces slightly
stronger magnetic fields at saturation.

Initially the medium has uniform density, ρ = 1,
with gas pressure, P = 1, so that the sound speed,
cs = 1. The initially magnetic field is uniform
and very weak, with β = P/PB = 106. The cubic
box has dimensions, L0 = Lx = Ly = Lz = 10
with periodic boundaries. Turbulence is driven by
solenoidal velocity forcing, drawn from a Gaussian
random field determined with a power spectrum
Pk ∝ k6 exp(−8k/kpeak), where kpeak = 2k0 (k0 =

2π/L0), and added at every ∆t = 0.01L/cs. The
power spectrum peaks around kd ≈ 1.5k0, or around
a scale, Ld ≈ 2/3L0. The amplitude of the perturba-
tions is tuned so that uRMS ∼ 0.5 or Ms ≡ uRMS /cs ∼
0.5 at saturation, close to what resuilts in full clus-
ter simulations (e.g., Nagai et al. (2007); Ryu et al.
(2008); Vazza et al. (2009), and see also §4).

Our setup gives a characteristic time scale, td =

Ld/uRMS ≈ 15. In that time the largest eddies
should spawn something resembling turbulent be-
havior. Indeed Fig. 1 shows that the mean turbu-
lent kinetic energy density, EK , grows and peaks at
t ∼ td, with a value corresponding to uRMS ∼ 2/3.
Subsequently, EK slowly declines as the mean mag-
netic energy density, EB grows. The kinetic energy
power spectrum, EK(k), at t = 20 also shown in
Fig. 1, exhibits a peak at k/k0 ∼ 2, near the driving
scale, and takes a Kolmogorov-like, inertial form,
E(k) ∝ k−5/3, for k/k0 <∼ 50. By this time energy has
cascaded from the driving scales far enough that the
motions, with negligible magnetic backreaction, are
reasonably described as classical, hydrodynamical
turbulence over a modest range of scales.

Turbulent fluid motions stretch and intensify
vorticity and magnetic flux, leading to development
of a chaotic sea of vortex and magnetic filaments.
This is illustrated for the magnetic field at t = 20
in the top of Fig. 2. The magnetic filaments in this
image have characteristic lengths of a few % of L0.
This agrees with the fact that the magnetic power
spectrum, EB(k), peaks for kpeak/k0 ∼ 50 at this time.
The transverse dimensions of the filaments, an or-
der of magnitude smaller at this time, seem to cor-
respond to the dissipation scale.

As the magnetic field intensifies, both vortic-
ity and magnetic energies undergo inverse cas-
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Fig. 1. Top: Evolution of kinetic, EK , and mag-
netic, EB, energies in simulations of ideal,
compressible MHD turbulence for two grid
resolutions. Bottom: Power spectra, E(k), of
kinetic and magnetic energies at t = 20 and
t = 130 in the 20483 zone turbulence.

cades from small to large scales, with the coher-
ence lengths of their filaments growing accordingly.
This is evident for the magnetic field in the power
spectrum changes in Fig. 1. The inverse cascade of
magnetic energy can be understood as follows. The
field is wrapped more quickly around smaller scale
eddies, because the eddy turn over time varies as
tl ∝ l2/3. Maxwell stresses, ∝ (∇ × B) × B, then,
feed back on the kinetic turbulence, causing signif-
icant modifications in the fluid motions, thus satu-
rating the magnetic field growth on a given scale, l,
when EB(l) ∼ EK(l). Since the turbulent kinetic en-
ergy on a scale EK(l) ∝ l2/3, the saturation scale of
the magnetic turbulence should evolve over time as
lB ∝ t3/2, while the magnetic energy grows linearly

Fig. 2. Magnetic energy density distributions in
MHD turbulence. Top: Log(EB) at t = 20 in
20483 simulation. Bottom: Log(EB) at t = 130.

with time, both consistent with Fig. 1. Eventually,
as lB approaches the outer scale of the kinetic tur-
bulence, Ld, the scalings break down and turbulence
reaches saturation where the ratio of the total mag-
netic to kinetic energy is EB/EK ∼ 2/3 (see also,
e.g., Schekochihin et al. (2004); Ryu et al. (2008);
Cho et al. (2009); Cho & Ryu (2009)).

Finally, we emphasize an interesting topologi-
cal transformation in the flow structure as turbulence
proceeds through the linear growth to the saturation
stage. Fig. 2 displays the different topologies of the
magnetic flux structures at t = 20 and t = 130.
At the earlier time the field is organized into indi-
vidual filaments. At the later time those filaments
have evolved into striated, ribbon-like forms (see
also Schekochihin et al. (2004)). Close examination
reveals the ribbons to be laminated, with magnetic
field and vorticity interleaved through each cross
section on scales of the order the dissipation length.
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In hydrodynamical turbulence such ribbons would
be unstable, but the interplay of vorticity and mag-
netic field seems to stabilize them in MHD turbu-
lence.

The t = 130 image in Fig. 2 also highlights
the important fact that the magnetic field in MHD
tubulence is highly intermittent. Relatively strong
field ribbons wrap around large shear leaving weak
field cavities. Such structures are quite distinct from
what one obtains, for example, if they construct a
magnetic field distribution out of a Gaussian ran-
dom variate, even if the outcome is a magnetic field
distribution having exactly the same power spec-
trum, as illustrated very nicely in previous work by
Waelkens et al. (2009).

4. Comparison to cluster simulations

Recent high-resolution cluster formation simula-
tions have been analyzed for information about
properties of ICM turbulence and its evolution. A
few of these simulations include MHD e.g., Donnert
et al. (2009); Ruszkowski et al. (2010); Xu et al.
(2010). With or without magnetic fields, an initial
challenge is identifying true turbulence in generally
complex flows, especially during and after merg-
ing activity. Purely solenoidal motions in simula-
tions in a periodic domain can be cleanly isolated
using Fourier transforms (e.g., Ryu et al. (2008)).
Otherwise some kind of spatial filtering is needed
that analyses the motions only up to a maximum
scale, such as the core radius of the cluster (e.g.,
Dolag et al. (2005)). We mention here a few find-
ings of general significance in this context.

Several studies have emphasized turbulence
generation from shocks in and around clusters, es-
pecially coming from structure formation generally,
and merger activity specifically (e.g., Kang et al.
(2007); Ryu et al. (2008); Vazza et al. (2009)).
Several studies found that turbulent energy in the
post-merger ICM can be comparable to, although
somewhat smaller than, the thermal energy; it com-
monly reaches levels EK ∼ 1/10 − 1/4 ET (Nagai
et al. (2007); Ryu et al. (2008); Vazza et al.
(2009)), similar to our simulations discussed in §3.
Thus, turbulent pressure may impact on hydrostatic
equilibrium-based mass estimates. Simulations also
suggest that the relative turbulent pressure support
is greater towards cluster outskirts (e.g., Ryu et al.
(2008); Lau et al. (2009)). The turbulence formed in
full cluster simulations does not have a sufficiently
wide inertial range to evolve a true Kolmogorov
power spectrum. Within that limitation, however,
the reported kinetic energy power spectra are con-

sistent with expectations. Several studies demon-
strated that cluster turbulence can amplify magnetic
fields to at least µGauss levels (e.g., Donnert et al.
(2009); Xu et al. (2010)). This amounts to ∼a

% or so of the thermal pressure and ∼10 % or so
of the kinetic turbulent pressure. From simulations
such as we reported here, the time to reach equipar-
tition (EB ∼ 2/3EK) from an initially weak field is
many driving scale times. It is not surprising that
the fields produced in clusters are well below those
levels. By the same token the magnetic field power
spectra may peak well below the driving scales. The
magnetic power spectrum reported from cluster for-
mation simulations using magnetic fields seeded by
AGNs in Xu et al. (2010), for example, is consistent
with this expectation.

Turbulence decay generally takes several eddy
times on the driving scale once the driving
ends. In clusters we expect decay times, τd >∼
Ld,100/∆u100Gyr, where Ld,100 in 100 kpc. This is
consistent with turbulence decay times ∼ Gyr re-
ported in cluster formation simulations (e.g., Paul
et al. (2010))

5. Conclusions
Processes such as shocks and outflows are likely to
drive turbulence in the ICM. The detailed physics
is difficult to model analytically, but simulations al-
low us to explore it in some detail. Magnetic fields
are integral ingredients of both the microphysics of
ICM transport properties and essential players in the
large scale dynamics. Simulations are revealing im-
portant insights into the character of the turbulence,
including properties of magnetic fields.
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